Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plants in grasslands navigate a complex landscape of interactions including competition for resources and defense against pathogens. Foliar fungi can suppress plant growth directly through pathogenic interactions, or indirectly via host growth-defense tradeoffs. The exclusion of foliar fungi allows the reallocation of resources from defense to growth and reproduction. In addition, plants also invest photosynthates in rhizodeposition, or root exudates, which play a significant role in shaping the rhizosphere microbial community. However, it remains unclear what impact the exclusion of foliar fungi has on the allocation of resources to rhizodeposition and the composition of the rhizosphere microbial community. Using a 6-year foliar fungicide study in plots planted with 16 species of native prairie plants, we asked whether foliar fungi influence the rhizosphere microbial composition of a common prairie grass (Andropogon gerardii) and a common legume (Lespedeza capatita). We found that foliar fungicide increased aboveground biomass and season-long plant production, but did not alter root biomass, seed production, or rhizosphere microbial diversity. The magnitude of change in aboveground season-long plant production was significantly associated with the magnitude of change in the rhizosphere microbial community in paired foliar fungicide-treatedvs. control plots. These results suggest important coupling between foliar fungal infection and plant investment in rhizodeposition to modify the local soil microbial community.more » « lessFree, publicly-accessible full text available March 5, 2026
-
Plants serve as critical links between above- and below-ground microbial communitites, both influencing and being influenced by microbes in these two realms. Below-ground microbial communities are expected to respond to soil resource environments, which are mediated by the roots of plants that can, in turn, be influenced by the above-ground community of foliar endophytes. For instance, diverse plant communities deposit more, and more diverse, nutrients into the soil, and this deposition is often increased when foliar pathogens are removed. Differences in soil resources can alter soil microbial composition and phenotypes, including inhibitory capacity, resource use, and antibiotic resistance. In this work, we consider plots differing in plant richness and application of foliar fungicide, evaluating consequences on soil resource levels and root-associatedStreptomycesphenotypes. Soil carbon, nitrogen, phosphorus, potassium, and organic matter were greater in samples from polyculture than monoculture, yet this increase was surprisingly offset when foliar fungal communities were disrupted. We find thatStreptomycesphenotypes varied more between richness plots—with theStreptomycesfrom polyculture showing lower inhibitory capacity, altered resource-use profiles, and greater antibiotic resistance—than between subplots with/without foliar fungicide. Where foliar fungicide affected phenotypes, it did so differently in polyculture than in monoculture, for instance decreasing niche width and overlap in monoculture while increasing them in polyculture. No differences in phenotype were correlated with soil nutrient levels, suggesting the need for further research looking more closely at soil resource diversity and particular compounds that were found to differ between treatments.more » « less
-
Abstract Endophytes often have dramatic effects on their host plants. Characterizing the relationships among members of these communities has focused on identifying the effects of single microbes on their host, but has generally overlooked interactions among the myriad microbes in natural communities as well as potential higher-order interactions. Network analyses offer a powerful means for characterizing patterns of interaction among microbial members of the phytobiome that may be crucial to mediating its assembly and function. We sampled twelve endophytic communities, comparing patterns of niche overlap between coexisting bacteria and fungi to evaluate the effect of nutrient supplementation on local and global competitive network structure. We found that, despite differences in the degree distribution, there were few significant differences in the global network structure of niche-overlap networks following persistent nutrient amendment. Likewise, we found idiosyncratic and weak evidence for higher-order interactions regardless of nutrient treatment. This work provides a first-time characterization of niche-overlap network structure in endophytic communities and serves as a framework for higher-resolution analyses of microbial interaction networks as a consequence and a cause of ecological variation in microbiome function.more » « less
-
Summary High‐quality microbiome research relies on the integrity, management and quality of supporting data. Currently biobanks and culture collections have different formats and approaches to data management. This necessitates a standard data format to underpin research, particularly in line with the FAIR data standards of findability, accessibility, interoperability and reusability. We address the importance of a unified, coordinated approach that ensures compatibility of data between that needed by biobanks and culture collections, but also to ensure linkage between bioinformatic databases and the wider research community.more » « less
An official website of the United States government
